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Abstract 

 
An abstract consists of answering three basic questions:  

1. What was done?  

2. How it is was done? and  

3. What were the basic findings and conclusions?  

 Abstract should be written in passive voice.  

 Abstract should not exceed 200 words.  

 It should be written in three separate paragraphs.  

 This section and all the coming sections should be written in Font 12, Times New 

Roman with regular style and single line spacing. 

 This page should contain the abstract ONLY and numbered using the Roman 

Style (i.e. I, ii, iii …etc) 

 It should be written in passive voice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) 
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Nomenclature 

The nomenclature defines the parameters, symbols and acronyms used in the report. 

Standardized symbols should be used whenever possible. 

 The units should be added to the nomenclature. 

 The parameters should be arranged alphabetically. 

 This section should be written in separate page(s). 

 

A  Area   [m2] 

P  Pressure  [N/m2] 

Re  Reynolds Number  [ND] 

 

Subscript 

f  Liquid 

s  surface 

 

Greek Symbols 

   Dynamic viscosity  [N-s/m2] 

   Angle of attack [deg] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) 
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Objective 

The objective(s) should be written based on the instructor’s explanation of the 

experiment. 

DO NOT copy from laboratory manual. 

 

 

Experimental Setup and Procedure 

This section should contain the working principle of the setup used in the experiment. 

It should contain a clear image of the setup with the main parts identified in suitable 

manner. 

The figure’s caption (name) should be written below it. 

 
Figure (1): Some numbers from the result of the experiment on nothing 

 

 Never start any paragraph with figure, table, graph …etc. You should allways write 

few introductry lines (e.g. This section discusses the setup used in conducting this 

experiment. The setup is shown below in Figure (1)). 

 Define the major components of the setup. 

 Explain briefly how it works. 

 Finally, explain with your own words (DO NOT COPY FROM USER MANUAL) 

how you conducted the experiment. 

 As of this page onwards, the page numbering should start using the 1-100 Arabic 

numbers. 

 

 

Data Observation 

The data observed are divide into two main items. 

 

Given data 

o This includes the constants that were not changed in the experiment e.g 

atmspheric conditions, certain setup dimensions (if not changed) e,g diameter, 

length ….etc. 

o As for the material’s properties e,g, density, viscosity, thermal conductivity …etc 

these should be mentioned with the reference wherefrom they were copied cited. 

 

Observed data 

 The data that were taken from the setup ONLY should be mentioned in the table. 
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 Table columns should be writen with units and without abbreviations. 

 The table caption should be mentioned on top of the table. 

 Do not add any calculated data in the table. 

 

 

 

(1) 

Table (1): The observed data 

 
If the experiment consists of several parts, put the tables with each case defined before 

that. 

For example : 

 

Case (I) : Partially submerged torous 

Inset the data observed table for this case below. 

 

Case (II) : Totally submerged torous 

Inset the data observed table for this case below. 

 

 

Sample calculations 

In this section you are required to provide with proper explanation (NOT only use 

equations and substitute numbers) the steps for your calculations. 

You should state which data you are taking for sample calculations. 

If the calculations involve theoretical and experimental values for comparison, you 

should calculate the percentage error in the experimental value. 

 

Uncertainty analysis 

This is extremely important part that tells the accuracy of the test procedure (NOT ONLY 

in the final value). 

This can be extremely helpful if one wishes to find the main factor responsible for the 

error. 

There are many methods suggested for this section : 

1) Uncertainty propagation (you can use suitable software for that as you have been 

taught) 

2) Limiting and relative limiting errors using equations. 

3) Limiting and relative limiting errors using maximum/minimum method. 
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Finally a summary of the calculations should be added in separate table(s) with 

errors and uncertainty calculations. 

 

Results and discussion 

Present your results logically, highlighting what is important and how the data you 

obtained have been analyzed to provide the results you discuss.  

• You should discuss what you infer from the data.  

• You need to adopt a critical approach.  

• For example, discuss the relative confidence you have in different aspects of 

the measurements.  

• Make sure that all diagrams, graphs etc. are properly labelled and have a 

caption.  
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 (2) 

• A neat hand drawn diagram is preferable to a poorly made computer diagram, 

or a poor resolution image copied from the web. 

 
Figure (2) : Variation of Quantity (2) with Quantity (1) 

 

 Graphs should be clear, informative, with proper legends and units. 

 If curve fitting is implemented, it should contain the fit model and its R2. 

 Graph outline should be removed. 

Conclusion 

This is the section in which you need to put it all together. It differs from the 

abstract in that : 

 It should be more informative, something that can easily be accomplished 

because you may devote more words to it. You should include a concise 

version of your discussion, highlighting what you found out, what problems 

you had, and what might be done in the future to remedy them.  

 You should also indicate how the investigation could usefully be continued.  

 

References 

For this section, you should provide the source of information wherefrom you got 

the equations, fluid or materials properties. 

Use this website: https://scholar.google.com/ 

 Textbooks, articles, and company websites are trusted sources. 

 Do not use the lab manual as a reference. 

 List the references in the same order as they appear in the text.  

 For my students, I ask them to use the APA or Chicago style. 

Book  

Holman, J. P. (2012). Experimental methods for engineers. McGrawHill, New 

Yourk. 

https://scholar.google.com/
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 (3) 

 

Journal article, 

Sang, J., Yuan, Y., Yang, W., Zhu, J., Fu, L., Li, D., & Zhou, L. (2022). Exploring 

the underlying causes of optimizing thermal conductivity of copper/diamond 

composites by interface thickness. Journal of Alloys and Compounds, 891, 161777. 

 

Web page,  

http://www.gobbeldygook.co.uk. Viewed on 22/10/2020. 

 

A word of caution on web-based information. Journal articles and most books are 

peer-reviewed. This means that other workers in the field have checked them for 

accuracy etc.. This is not true of websites. Be careful in taking information from 

such sources and ,if at all possible, verify the information by checking in books etc. 

You should also read the web information critically to see that it makes sense to you.  

You are an engineer and should take pride in not being duped into making easy 

mistakes by faulty information 
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Simple & Compound Pendulums 
 

 

I- Introduction: 
 

      A simple pendulum is simply a concentrated mass m attached to one of the 

ends of a mass-less cord of length l, while the other end is fitted as a point of 

oscillation, such that the mass is free to oscillate about that fixed point in the 

vertical plane.  The compound pendulum differs from the simple one in that it has 

a mass distribution along its length, -that is its mass is not concentrated at a given 

point-, therefore it has a mass moment of inertia I about its mass centre. 

Any rigid body that has a mass m, and mass moment of inertia I and is suspended 

at a given distance h from its centre of gravity represents a compound pendulum.  

        It should be realised in the derivation of the governing equations, that the 

angle of oscillation of the pendulum, simple or compound, should be small. 

 

 

 

II- Objectives: 
 

        This experiment aims at studying the behaviour of both simple and compound 

pendulums, in order to realise the following objectives: 

1) The independence of the period of oscillation of the simple pendulum from 

its mass. 

2) The relationship between the period of oscillation and its length. 

3) The determination of the value of the gravitational acceleration g, to be 

compared with the known standard value. 

 

 

 

III- System Description: 

 
Part One- Simple Pendulum: 
 

        The schematic representation of the simple pendulum is shown in Figure-1.1-

a, which consists of a small ball of mass m suspended by a mass-less cord of 

length l.  The system is given an initial small angular displacement , and as a 

result the pendulum oscillates in the vertical plane by a time varying angle (t) 

with the vertical direction. 
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Part Two- Compound Pendulum: 
 

        The compound pendulum is schematically shown in Figure-1.2-b below, and 

it consists of a uniform slender bar of total mass m and length l, which may be 

suspended at various points A along the bar with the aid of a sliding pivot situated 

at any distance h from the centre of gravity of the pendulum. 

(For this case, the centre of mass is at the middle of the rod). 

     As a result of an initial angular displacement, the pendulum oscillates also 

with a time-varying angle (t) with the vertical direction. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-1.1 Schematic representation of the 

                   (a)simple pendulum     (b)compound pendulum 
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IV- Governing Equations: 
 

Part One - Simple Pendulum: 
 

        The dynamic equilibrium equation (equation of motion) corresponding to the 

tangential direction of motion of the concentrated mass yields: 

 

0sin  θmgθml                    (1) 

 

Assuming a small magnitude for the angle, so that  sin , and simplifying   

eqn-1 leads to the equation: 

 

0 
l

g                 (2) 

 

 

Let the motion defined by the function (t) be a simple harmonic motion defined 

as tt n sin)(  , where n is the natural frequency of the pendulum.  Substituting 

for   in eqn-2 and simplifying gives n as: 

 

l

g
n                           (3) 

 

The period of oscillation (), is defined as the time required to complete one full 

cycle of motion or one oscillation. By observing the function (t), the period  is 

given as: 

 

g

l

n





 2

2
                (4) 

 

 

 

Part Two- Compound Pendulum: 
 

         For the compound pendulum, the dynamic equilibrium equation is obtained 

by taking the moments about pivot point A as given below: 

 

0sin   mghI A
                (5) 

 

where; IA is the mass moment of inertia of the rod about the pivot point A.   
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Assuming a small angle of oscillation and simple harmonic motion for (t), leads 

to the following expressions for the natural frequency n and period , 

respectively: 

 

A

n
I

mgh
                 (6) 

 

mgh

I A 2                 (7) 

 

 

The mass moment of inertia about the pivot point IA, is defined in terms of the 

mass moment of inertia about the centre of gravity ICG and the distance h between 

the centre of gravity and the pivot point A as: 

 
2mhII CGA                 (8) 

 

or 

 

)( 22 hKmI CGA                 (9)  

 

where; KCG is the radius of gyration of the rod about the centre of gravity. 

 

 

      Using eqns-7 & 9, then the period of oscillation of the compound pendulum is 

given by the expression: 

 

gh

hKGC

22

2


              (10)  
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V- Experimental Procedures: 
 

Part One- Simple Pendulum: 
 

        Steel and plastic balls are used separately in this experiment as follows: 

 

1) Attach the cord to the steel ball at one end, and attach the other end to the main 

frame.  Record the length of the cord l. 

2) Displace the ball from its neutral position by a small amount, and then release 

it to oscillate freely.  Measure and record the time T required to complete ten 

oscillations. 

3) Adjust the cord length to a new value and repeat step-2. 

4) Repeat Step-3 six more times so that eight pairs of l and T are recorded. 

5) Replace the steel ball with the plastic ball and repeat steps-1 through 4.  

 

 

 

Part Two- Compound Pendulum: 
 

        The experimental procedures for the compound pendulum part are carried out 

through the following steps: 

 

1) Measure and record the total length l of the rod.  Since the rod is uniform, the 

geometrical centre point coincides with the rod’s centre of gravity CG. 

2) Pivot the rod at an arbitrary point A, and measure the distance from that point 

to the centre of gravity h.  Displace the rod by a small angle from its neutral 

position and release it freely, then measure and record the time required to 

complete ten oscillations T. 

3) Change the pivoting point A and repeat step-2. 

4) Repeat step-3 eight more times so that ten pairs of h and T are recorded. 
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VI- Collected Data: 
 

Part One- Simple Pendulum: 
    
Table-1.1 Collected data for the simple pendulum part 

 

 

 

Part Two- Compound Pendulum: 
 

l = …………cm 

 
Table-1.2 Collected data for the compound pendulum part 

Trial h (cm) T (second) 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

 

 

 

 

 

 

Trial Steel Ball Plastic Ball 

l (cm) T (second) l (cm) T (second) 

1     

2     

3     

4     

5     

6     

7     

8     



 
 
 

 

16 

 

VII- Data Processing: 

 
Part One- Simple Pendulum: 
 

Use eqn-4: 

g

l
 2  

Evaluate the theoretical 

period Theor corresponding 

to each length l. 

The values of Theor are to be 

compared with the 

experimental values Exper.  

 

Square both sides of 

eqn-4 to get: 

g

l
πτ 22 4  

 

Draw 2 versus l as shown 

in Figure-1.2. 
Slope = 

g

24
  

 g is found and compared 

to the standard value. 

 

 

 

Part Two- Compound Pendulum: 
 

Square eqn-10 and 

rearrange to get: 

 

 22
2

2 4
hK

g
h CG 


  

Draw 2h versus h2 as 

shown in Figure-1.3. 
1- Slope = 

g

24
 

      find g and compare it to  

     the standard value. 

2- Intercept with the vertical  

     axis 
2

24
CGInt K

g
Y 











  

      KCG is obtained. 

3- Intercept with the horizontal    

     axis 
2

CGInt KX   

      KCG is verified. 

From eqn-10: 

gh

hKCG

22

2


   

Draw  versus h as that 

in Figure-1.4. 

Find min and the corresponding 

value of h. 

 

 

Differentiate eqn-10 to 

find that at h = KCG , the 

value of min is given by: 

g

KCG

2

min

8
       (11) 

 

Determine the values of 

min and h. 

Compare the values of min and 

h obtained from both; Figure-

1.4 and eqn-11.  
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VIII- Results: 

 
Part One- Simple Pendulum: 
 
Table-1.3 Data processing analysis for the simple pendulum part 

Steel Ball 

Trial l  

(cm) 
Exper 

(second) 

Theor 

(second) 

(Exper.)2 

(second)2 

 Percent 

Error () 

1      

2      

3      

4      

5      

6      

7      

8      

 

 
Table-1.4 Data processing analysis for the simple pendulum part 

Plastic Ball 

Trial l  

(cm) 
Exper 

(second) 

Theor 

(second) 

(Exper.)2 

(second)2 

 Percent 

Error () 

1      

2      

3      

4      

5      

6      

7      

8      

 

 
Table-1.5 Data processing results for the simple pendulum part. 

Quantity Slope from 

Figure-1.2: 

g (m/s2) Percentage 

Error of g () 

Steel Ball    

Plastic Ball    
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Part Two- Compound Pendulum: 
 
Table-1.6 Data processing analysis for the compound pendulum part 

Trial h (cm)  (second) h2 (cm)2 2h (cm.sec2) 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

 

 
Table-1.7 Data processing results for the compound pendulum part 

From Figure-1.3 

Slope (sec.2/m) g (m2/sec.) Percent Error () 

   

YInt (sec2.m) KCG (cm)  

   

XInt (m2) KCG (cm) Percent Error () 

   

 

From Figure-1.4 From Eqn-11  

min (sec.) min (sec.) Percent Error () 

   

h at  = min (cm) h (cm) Percent Error () 
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IX- Discussion And Conclusions: 
 

1) What do we mean by “Simple Harmonic Motion” (SHM)? 

 

 

 

 

 

 

 

2) Why did we use two masses with identical geometries for the simple pendulum 

experiment? 

 

 

 

 

 

 

3) What is the physical meaning of h being equal to zero?  What is the 

corresponding period of oscillation? 

 

 

 

 

 

 

4) Why does the compound pendulum have the identity of possessing two values 

of h corresponding to the same period of oscillation  ? 

 

 

 

 

 

 

5) Based on the equation of motion, what is the difference between the simple and 

compound pendulums?  How can we replace the compound pendulum with a 

simple pendulum having the same period of oscillation? 
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Centre of Percussion & Kater’s (Reversible) Pendulum 
 

 

I- Introduction: 
 

        The centre of percussion is the point within a suspended body (a compound 

pendulum) at which that body can be given an impulsive force without any 

reaction formation at the point of suspension. 

        This concept has an extensive importance in the design of many engineering 

applications and tools, in which it is necessary to minimise or eliminate reactive 

forces at swivel points.  An example of that is the Hammer, which is designed to 

have its centre of percussion at its bulkhead, with respect to the pivot point (the 

point of handling); and as a result, the person holding the hammer will be free of 

reactions while using it. 

Other practical applications are Baseball and Cricket bats. 

 

        Kater’s Pendulum (Reversible Pendulum) is just a method employing a 

specific form of compound pendulums for accurate determination of the 

gravitational acceleration g. 

 

 

 

II- Objectives: 
 

        In this experiment, the following aims shall be realised: 

1) Demonstration and examination of the concept of the centre of percussion. 

2) Understanding the technique of finding the radius of gyration and then the 

centre of percussion of the compound pendulum using time measurements. 

3) Determination of the gravitational acceleration constant g using the 

reversible pendulum. 

4) Estimation of the theoretical period of oscillation of the reversible 

pendulum at each configuration, to be compared with the experimental 

value. 

5) Finding the length of the reversible pendulum that has an equivalent reverse 

length (with the same period of oscillation). 
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III- System Description: 

 
Part One- Centre Of Percussion: 
 

        The schematic representation of the system used in the experiment is shown 

in Figure-2.1 below, which shows a compound pendulum that consists of a rigid 

rectangular block, and a small mass, which is able to slide freely in a central slot 

within the block. 

        The pendulum is pivoted at point A, and the slide-able mass is positioned at 

distance Y from point A, so the corresponding position of the centre of gravity of 

the system is at distance h from point A.  That is; the centre of gravity of the 

system is altered by changing the position of the slideable mass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure-2.1 Layout of the Centre of Percussion part 

 

 

 

Part Two- Reversible Pendulum: 
 

        The reversible pendulum shown schematically in Figure-2.2 is simply a 

compound pendulum with two points of suspension A1 & A2.  It consists of a 

uniform circular cross-section rod of mass M = 0.680 kg, and length L; provided 

with two knives as pivot points at both ends A1 and A2. 

Y

Centre of

Gravity CG

h

Pivot point

A

Slide-able

Mass
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        A slide-able metal cylinder of mass m = 1.1 kg is adjusted at any distance Y1 

from A1, and distance Y2 from A2; and as a result of this, the centre of gravity CG 

of the whole assembly will be at distance h1 from A1, and h2 from A2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure-2.2 Layout of the Reversible Pendulum part 

 

 

 

IV- Governing Equations: 

 
Part One- Centre Of Percussion: 
 

        For the system shown in Figure-2.1, the equation of motion is simply that for 

a compound pendulum, that is: 

 

0)(   MghI A
                                                                                              (1) 

 

 

And so, we can find that: 

* Natural frequency = 
A

n
I

Mgh
                                                     (2) 

 

Y2

Y1

h2

h1

Pivot point

A1

Pivot point

A2

Centre of

Gravity CG

Slide-able

mass (m)

Rod

(L,M)
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* Period of oscillation = 
Mgh

I A

n





 2

2
                                                          (3) 

 

 

But, from the definition of the mass moment of inertia I: 
2

AA MKI   
222

hKK CGA   

 

Then, the mass moment of inertia about point A is written as: 

 

)( 22
hKMI CGA                                               (4) 

 

where; KA is the radius of gyration about point A. 

            KCG is the radius of gyration about the centre of gravity CG. 

 

 

By substitution in eqn-3, it becomes: 

 

gh

K A

2

2                                                                                                             (5) 

 

 

Define the equivalent length of the compound pendulum as lequ, then: 

 

h

K
h

h

K
l CGA

equ

22

                                                                                              (6) 

 

 

 

Part Two- Reversible Pendulum: 
 

        The system shown in Figure-2.2 also represents a compound pendulum when 

suspended at either A1 or A2, so it follows the same form of eqn-1.  And as a result, 

we find that: 

1

2

1

2

1

2

1
1 22

gh

hK

gh

K CGA 
                                                                               (7) 

 

2

2

2

2

2

2

2
2 22

gh

hK

gh

K CGA 
                                                                              (8) 
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Theoretically, to find out the centre of gravity of the assembly at any given 

configuration, then: 

 

mM

mY
ML

h





1

1
2                                                                                                         (9) 

 

mM

mY
ML

h





2

2
2                                                                                                      (10) 

 

 

Also, the radius of gyration about the centre of gravity KCG is given by: 

 

 

mM

hYmh
LL

M

KCG




























2

11

22

1
212

                                                             (11) 

 

 

Note that: 

2121 YYhhL   
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V- Experimental Procedures: 

 
Part One- Centre Of Percussion: 
 

1- Adjust the slide-able mass at any position on the block, and record the distance 

Y from the mass centre to the pivot point A. 

2- Take the whole pendulum to the edge of the bench, and balance it as possible 

to determine the position of the centre of gravity CG, and record the distance h. 

3- Hang the pendulum on the main frame in a vertical configuration, then give it a 

small pulse and leave it to oscillate freely. 

4- Record the time required to complete ten oscillations T. 

5- From eqns-4 & 5, find the corresponding value of KA, and then find the 

equivalent length of the pendulum lequ. 

6- Put the knife of the compound pendulum on the flat part of the main frame, and 

use another pendulum with a slidable ball by adjusting the ball at distance 

equals to lequ from its pivot point.  Rise the last pendulum significantly then 

release it to hit the compound pendulum. 

 

*  This point where the impulsive force is applied (at distance = lequ) represents 

the position of the centre of percussion of the pendulum, and you are to verify this 

by noticing that the knife of the compound pendulum will not slide on the main 

frame due to this impact; which implies that no reaction is formed at point A. 

(Note: This may be recognised and differentiated better by sticking the compound 

pendulum at other points). 

 

7- Repeat the previous steps for another four positions of the slideable mass Y. 

 

 

 

Part Two- Reversible Pendulum: 
 

1- Hang the pendulum from one of its ends A1, and adjust the slide-able mass m at 

any distance from that end Y1. 

2- Displace the pendulum by a small amount, and leave it to oscillate in the 

vertical plane. Take the time required to complete ten oscillations T1. 

3- Reverse the pendulum (hang it from the other end A2), and measure the 

distance Y2. 

4- Repeat step-2, and record the time required for another ten oscillations T2. 

5- Repeat the process for total seven different trials. 
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VI- Collected Data: 

 
Part One- Centre Of Percussion: 
 
Table-2.1 Collected data for the Centre of Percussion part 

Trial Y (cm) h (cm) T (second) 

1    

2    

3    

4    

5    

 

 

 

Part Two- Reversible Pendulum: 

 

L = ………… (m) 
 
Table-2.2 Collected data for the Reversible Pendulum part 

Trial Y1 (cm) T1 (second) Y2 (cm) T2 (second) 

1     

2     

3     

4     

5     

6     

7     
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VII- Data Processing: 
 

Part One- Centre Of Percussion: 
 

From eqn-5: 

gh

K A

2

2   

 

Find KA. 

From eqn-6: 

h

K
h

h

K
l CGA

equ

22

  

 

Find lequ 

 

 

 

Part Two- Reversible Pendulum: 
 

From eqns-8, 9 & 10. Find h1, h2, and KCG respectively. 

 

From eqns-7 & 8: 

1

2

1

2

1

2

1
1 22

gh

hK

gh

K CGA 
   

2

2

2

2

2

2

2
2 22

gh

hK

gh

K CGA 
   

 

Use each one separately to find the value of 

the gravitational acceleration g. 

Compare the results with the standard 

value. 

 

Use eqns-7 & 8, with the standard 

value of g. 

Evaluate the theoretical period of oscillation 

1-Theor from eqn-7, and compare it with the 

experimental value 1-Exper. 

For eqn-8, find 2-Theor and compare it to 2-

Exper. 

 

Equate both eqns-7 & 8, to get: 

 

2

2

2

2

1

2

1

2

h

hK

h

hK CGCG 



 

To find h1, h2 corresponding to same period: 

Draw 1, 2 versus h1 as shown in Figure-

2.3, then the point of intersection represents 

h1 corresponding to (1 = 2). 

And from h1 you can find h2, Y1 and Y2. 
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VIII- Results: 

 
Part One- Centre Of Percussion: 
 
Table-2.3 Data processing results for the Centre of Percussion part 

Trial Y (cm) h (cm)  (second) KA (cm) lequ (cm) 

1      

2      

3      

4      

5      

 

 

 

Part Two- Reversible Pendulum: 
 
Table-2.4 Data processing analysis for the reversible pendulum part 

Trial Y1 (cm) Y2 (cm) h1 (cm) h2 (cm) KCG (cm) 

1      

2      

3      

4      

5      

6      

7      

 

 
Table-2.5 Data processing results for the Reversible Pendulum part 

Trial 1-Theor. 

(second) 

1-Exper. 

(second) 

1 Percent 

Error () 

2-Theor. 

(second) 

2-Exper. 

(second) 

2 Percent 

Error () 

1       

2       

3       

4       

5       

6       

7       
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Table-2.6 Data processing results for the Reversible Pendulum part 

Trial g eqn-7 

(m/sec.2) 

g Percent 

Error () 

g eqn-8 

(m/sec.2) 

g Percent 

Error () 

1     

2     

3     

4     

5     

6     

7     

 

 
Table-2.7 Data processing results for the Reversible Pendulum part 

From Figure-2.3: 

h1 (cm)  h2 (cm)  

Y1 (cm)  Y2 (cm)  

 

 

 

IX- Discussion And Conclusions: 
 

1) What is the physical meaning of the equivalent length of the compound 

pendulum? 

 

 

 

 

 

 

 

 

2) One of the important employments of the concept of the centre of percussion in 

engineering is found in the automobile, by the proper selection of the positions 

of the front and rear axles relative to each other, how would you explain that? 
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3) Comment on your observations concerning the reaction at the pivot point of the 

compound pendulum, when it has been hit at its centre of percussion compared 

to other points? 

 

 

 

 

 

 

4) Name the major sources of errors in the experiment, and comment briefly on 

the effect of each one on the results obtained? 

 

 

 

 

 

 

5) In the reversible pendulum part of the experiment, the effect of the knifes fixed 

at both ends of the bar has not been Considered in the determination of h1, h2 & 

KCG.  Consider any case from Table-2.2, and recalculate the corresponding 

parameters with these knifes included, and find the resulted error for each 

parameter?     (The mass of each knife is MK = 0.21 kg). 
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Bifilar Suspension & Auxiliary Mass Method 
 

 

I- Introduction: 
 

        The Bifilar Suspension is a technique that could be applied to objects of 

different shapes, but capable to be suspended by two parallel equal-length cables, 

in order to evaluate its mass moment of inertia I about any point within the body. 

In this experiment, the technique will be applied to find the mass moment of 

inertia of a regular cross-section steel beam about its centre of gravity. 

 

 

 

II- Objectives: 
 

        This experiment is to be performed in order to evaluate the mass moment of 

inertia of a prismatic beam by introducing two methods: 

1) The Bifilar Suspension Technique. 

2) The Auxiliary Mass Method. 

   Then the values obtained from the two different methods will be compared with 

the value obtained analytically, using the geometry and dimensions of the beam. 

 

 

 

III- System Description: 
 

        The layout of the experiment is shown schematically in Figure-3.1, in which 

we have a regular rectangular cross-section steel beam, of length L, total mass M, 

and mass moment of inertia about its centre of gravity I.  The beam is suspended 

horizontally through two vertical chords, each of length l, and at distance b/2 

from the middle of the beam CG. 

(Two small chucks are provided for attachment). 

    

        The system is initially balanced, and by exerting a small pulse in such a way 

that the beam keeps oscillating in the horizontal plane about its middle point 

(centre of gravity CG), then by virtue of the tension forces initiated in the 

suspension chords, the beam will oscillate making an angle θ with its neutral axis, 

and the suspension chords will make an angle  with the original vertical position. 

(General view of the system is shown in Figure-3.2). 
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Figure-3.1 General layout of the Bifilar Suspension 

 

 

 

IV- Governing Equations: 

 
Part One- Bifilar Suspension Technique: 
 

        In the system shown in Figures-3.1 & 2, and under equilibrium conditions, 

the tension force in each chord is equal to Mg/2, and by disturbing the system with 

an initial angular displacement  about the middle point in the horizontal plane, it 

will oscillate with a time-varying angle θ(t) under the action of the tension forces 

in the chords. 

 

     Taking the summation of moments about the middle point (Centre of Gravity 

CG), we get the equation of motion as: 

 

0
2









 

Mgb
I                                                                                       (1) 

 

But: 



Axis of rotation

Reference

(neutral) axis

l

b

L

Chord

Beam

(L, M, I)

Centre of Gravity

CG

Chuck

Suspension Point
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 l
b


2

   (By equating the length of the arc of oscillation) 

 

Substituting in eqn-1, and rearranging: 

 

 0
4

2









 

Il

Mgb                                                                             (2) 

 

 

From the above equation of motion, we find that: 

 

* Natural frequency = 
Il

Mgb
n

4

2

                                                                (3) 

* Period of oscillation = 
2

4
2

2

Mgb

Il

n





                                   (4) 

 

 

 

Part Two- Auxiliary Mass Method: 
 

        Consider the previous system with the addition of two identical circular disks 

of radius R, mass m, and inertia Im; each at a side at distance Y from the middle of 

the beam. 

The resulting equation of motion of the modified system will be: 

 

(𝐼 + 2𝐼𝑚)𝜃̈ + (
(𝑀+2𝑚)𝑔𝑏2

4𝑙
) 𝜃 = 0                                                     (5) 

 

where; 

𝐼𝑚 = 𝑚(𝑅2 + 𝑌2),          mhRm 2  

 

 

Rearrange eqn-5, yields: 

 

𝜃̈ + (
(𝑀+2𝑚)𝑔𝑏2

4𝑙(𝐼+2𝐼𝑚)
) 𝜃 = 0                                                      (6) 

 

 

 

From eqn-6, the natural frequency and the period of oscillation are found as: 
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* Natural frequency = 
 
 m

n
IIl

mMgb

24

22




            (7) 

* Period of oscillation = 
 
 mMgb

IIl m

n 2

24
2

2
2 


 




                                             (8) 

 

 

 

Part Three- Analytical Solution: 
 

        Using the dimensions of the beam, then its mass moment of inertia about the 

centre of gravity can be found analytically as follows: 

 

I = I (solid beam) – I (holes) + I (two chucks) 

  = IS – IH + IC                (9) 

 

1) 
1212

32
whLLM

I S

S


                (10) 

 

2) 22 2
2

15
XMrMI HHH   

          







 222 2

2

15
Xrhr            (11) 

as:- 

r: the radius of each hole. 

X: the distance between the hole and the middle point of the beam. 

 

3) 

2

2

2
2 










b
MrMI CCCC

 

          









2

2
22 b

rhr CCC                        (12) 

as:- 

rC: the radius of the chuck. 

hC: the height of the chuck. 

 

 

The geometry and the definitions of the basic parameters of the system are 

provided in Figure-3.2. 
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V- Experimental Procedures: 

 
Part One- Bifilar Suspension Technique: 
 

1- Attach the first chord to the main frame and measure its length, then attach the 

second chord to the main frame with the same length as the first one. 

(The length to be measured and included in the calculations l should include both 

the chord’s length and the chuck’s height, see Figure-3.1) 

2- Insert a slender rod through the middle hole of the beam, to provide as an axis 

of rotation for the beam. 

3- Hold the slender rod in place and give the beam a small displacement from one 

of its ends in the transverse direction.  The beam should oscillate in the 

horizontal plane only. 

4- Measure the time elapsed to complete ten oscillations T. 

5- Release the chords then re-attach them at another length l, and repeat steps-2, 3 

& 4. 

6- Repeat step-5 four more times to get total six pairs of l and T. 

 

 

 

Part Two- Auxiliary Mass Method: 
 

1- Take the previous system and fix it at any length l. 

2- Put the two disks (auxiliary masses) at distance Y from the beam’s middle 

point, each at a side, and record the value of Y. 

3- Displace the beam slightly as in the previous part, and again measure the time 

elapsed in ten oscillations T. 

4- Change the positions of the two masses to new value of Y, then repeat step-3. 

5- Repeat step-4 for total different six values of Y. 
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VI- Collected Data: 
 

Basic Parameters: 
 
Table-3.1 Dimensions to be used according to Figures-3.1 & 2 

Parameter Value Parameter Value 

L (cm)  rc (mm)  

w (mm)  hc (mm)  

h (mm)  R (mm)  

b (mm)  hm (mm)  

r (mm)    

 

 

 

Part One- Bifilar Suspension Technique: 
 
Table-3.2 Data collected for the Bifilar Suspension Technique part 

Trial l (cm) T (second) 

1   

2   

3   

4   

5   

6   

 

 

 

Part Two- Auxiliary Mass Method: 
 

l = ……………(cm) 

m = ……………(kg) 

 
Table-3.3 Data collected for the Auxiliary Mass Method part 

Trial Y (cm) T (second) 

1   

2   

3   

4   

5   

6   
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VII- Data Processing: 
 

Part One- Bifilar Suspension Technique: 
 

Square eqn-4 to get: 

l
Mgb

I










2

2
2 16

  

 

Draw 2 versus l as 

shown in Figure-3.3. 
Slope =

2

216

Mgb

I
  

 I is determined. 

 

 

 

 

Part Two- Auxiliary Mass Method: 
 

Square eqn-8 to get: 

 

 
 mMgb

IIl m

2

216
2

2
2







  

Draw 2 versus Im as 

shown in Figure-3.4. 
1- Slope =

 mMgb

l

2

32
2

2




  

      Determine g and compare it  

         with the standard value.  

2- Interception with the vertical  

     axis 
 mMgb

Il
YInt

2

16
2

2





 

      I is determined. 

3- Interception with the horizontal   

     axis 
2

I
X Int   

      I is verified. 
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VIII- Results: 

 
Part One- Bifilar Suspension Technique: 

 

M = ………… (kg). 

 
Table-3.4 Data processing analysis for the Bifilar Suspension Technique part 

Trial l (cm)  (second) 2 (second2) 

1    

2    

3    

4    

5    

6    

 

 
Table-3.5 Data processing results for the Bifilar Suspension Technique part 

Quantity Slope (sec.2/m) I (kg.m2) 

From Figure-3.3   

 

 

 

Part Two- Auxiliary Mass Method: 
 
Table-3.6 Data processing analysis for the Auxiliary Mass Method part 

Trial Y (cm) Im (kg.m2) 2 (second2) 

1    

2    

3    

4    

5    

6    

 

 
Table-3.7 Data processing results for the Auxiliary Mass Method part 

From Figure-3.4 

Slope (s2/m2.kg)  g (m/sec.2)  

YInt (sec.2)  I (kg.m2)  

XInt (kg.m2)  I (kg.m2)  
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Part Three- Analytical Solution: 
 
Table-3.8 Analytical determination of the mass moment of inertia I 

IS (kg.m2)  

IH (kg.m2)  

IC (kg.m2)  

I =IS  IH + IC (kg.m2)  

 

 

 

 

Comparison: 
 
Table-3.9 Comparison of I obtained by the two methods with the analytical value 

Method: I (kg.m2) Percentage Error 

() 

Analytically   

Bifilar Suspension   

Auxiliary Mass   
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IX- Discussion And Conclusions: 
 

1) In the first part, what modifications should be done (concerning the derivation 

of equation of motion) in order to determine the mass moment of inertia about 

any point other than the middle point of the beam?  Derive the equation of 

motion for this case. 

 

 

 

 

 

 

 

 

 

 

2) In the second part (the Auxiliary Mass Method part), is it acceptable to use 

only one mass at either sides of the beam? Explain? 

 

 

 

 

 

 

 

3) Referring to the derivation of the equation of motion for the beam, why is it 

important to keep the angle of oscillation of the beam small during the 

execution of the experiment? What is the basic assumption that is based on 

assuming a small angle of oscillation? 

 

 

 

 

 

 

 

4) From your results, comment on the accuracy of the two methods, mentioning 

the major sources of errors in each part of the experiment? 
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Rotor (Flywheel) Systems 
 

 

I- Objectives: 
 

        This experiment consists of three major parts dealing with various items 

concerning rotor systems, and the general features and objectives to be recognised 

of each part are as follows: 

 

1- The first part provides the procedures for determining the mass moment of 

inertia I of two rotors (Flywheels) of different sizes, using the Accelerating 

Torque Method.  The results of this method are to be compared with the 

analytical values obtained from the given dimensions of the two rotors. 

 

2- In the second part, time measurements are used to estimate the modulus of 

rigidity G of a slender steel shaft, which is to be compared with the standard 

value for steel (about 80 GPa). 

 

3- The third part is simply a two-rotors’ system, presented to study the response 

(behaviour) of such a system under vibrations, and use it to: 

 Find the period of oscillation of the system at a certain length of the 

connecting shaft, to be compared with the theoretical value. 

 Determine the position of the nodal point of the system both experimentally 

and analytically. 

 

 

II- System Description: 

 
Part One- Rotor’s Inertia Determination: 
 

        The schematic representation of this part is shown in Figure-4.1, in which the 

circular rotor of mass M, radius R and mass moment of inertia I; is fitted to the 

main frame by a bearing joint, with freedom of rotation about its central axis. 

A small mass (m = 20 gm) is attached to one end of a chord, while the last is 

wounded around the circumference of the circular rotor, and the whole assembly is 

held in place with the small mass at elevation h from the floor. 

        When the mass is released, it moves downward with acceleration a, causing 

the flywheel (rotor) to rotate with angular acceleration, by virtue of the tension 

force T established in the chord.  Travelling distance h from the instance of 
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releasing the small mass to that it reaches the floor takes place in the time interval 

t. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure-4.1 Layout of the Rotor’s Inertia Determination part 

 

Part Two- Modulus Of Rigidity Determination: 
 

        The system described in Figure-4.2 below is simply a circular disk of mass M 

and mass moment of inertia I, fitted to the main frame by a bearing joint as in the 

previous part but attached to the end of a slender circular shaft of length L, 

diameter d, polar moment of inertia J and modulus of rigidity G.  The other end of 

the shaft is fixed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

R

Small mass

m

Weight

(mg)

Tension

(T)

Rotor

(M, I)
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I

ma

Chord

Tension

(T)

 

Rotor

(M, I)
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(L, d, J, G)

Supporting Bar

Mb

Auxiliary Mass

Ma
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Figure-4.2 Layout of the Modulus of Rigidity Determination part 

 

        Two small auxiliary masses (Ma = 1.80 kg) are added to the rotor by means 

of two supporting bars, each of mass (Mb = 0.350 kg).  The whole assembly 

oscillates about the axis of the shaft with a time varying angle (t), as a result of an 

initial angular displacement . 

 

 

 

Part Three- Two-Rotors’ System: 
 

        The system shown in Figure-4.3 consists of two flywheels of different sizes; 

big rotor (Rotor-1) of mass M1 and inertia I1, and a small rotor (Rotor-2) with mass 

and inertia M2 and I2, respectively.  The two rotors are attached to the ends of a 

slender shaft of length L, diameter d, polar moment of inertia J and modulus of 

rigidity G. 

     Giving one of them an initial angular displacement  with respect to the other 

one, the two rotors will oscillate in their own planes with opposite sense to each 

other, by the angles 1(t) and 2(t), respectively. 

 

 

 

 

 

 
 

 

 

 

 
Figure-4.3 Layout of the Two-Rotors’ System part 
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III- Governing Equations: 

 
Part One- Rotor’s Inertia Determination: 
 

        From the free body diagrams of the rotor and the small mass in Figure-4.1, 

then by assuming a frictionless bearing (negligible friction), then the equation of 

motion of the rotor is given by: 

 

0TRI                                                                                                              (1) 

 

But, 

R

a
  

 0TR
R

Ia
                                                                                                         (2) 

 

 

For the small mass, by applying Newton’s Second Law of motion, we get: 

 

maTmg                                                                                                             (3) 

 

 

Eliminating T from eqns-2 & 3 yields: 

 









 12

a

g
mRI                (4) 

 

 

Provided that the rotor is supported on a frictionless bearing, we may approximate 

the acceleration of the small mass by Newton’s Law of free falling: 

 
25.0 ath   

 

 

By substitution in eqn-4, we end up with: 

 









 1

2

2
2

h

gt
mRI                                             (5) 
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Theoretically: 

 

        For a circular disk, the mass moment of inertia is given by the formula: 

 

2

2

1
MRI   

 

And for the general case shown in Figure-4.4, a generalized form of this equation 

can be written as: 

 

2

2

1
MiRiI                   (6) 

 

 

 

Part Two- Modulus Of Rigidity Determination: 
 

        For the system shown in Figure-4.2, and with the aid of Figure-4.4, then: 

 

The equation of motion of the assembly is: 

 

0  TT KI                                                                   (7) 

 

 

From this, the natural frequency and the period of oscillation are found to be: 

* Natural frequency = 
T

T
n

I

K
                                                                          (8) 

* Period of oscillation = 
T

T

n K

I





 2

2
                      (9) 

 

 

where: 

 IT: is the total inertia of the whole assembly  

baT IIII                                   (10) 

 











2

1

2

2
2 C

r
MI aa               (11) 
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









2

2

2

12
4 C

b
MI bb              (12) 

KT: is the torsion stiffness of the shaft, and it is given by: 

L

Gd

L

GJ
KT

32

4
              (13) 

 

 

 

Part Three- Two-Rotors’ System: 
 

        Referring to the system shown in Figure-4.3, then: 

The equation of motion of Rotor-1 is: 

 

  02111   TKI   

   021

1

1  
I

KT                                            (14) 

 

 

The equation of motion of Rotor-2 is: 

 

  01222   TKI   

   012

2

2  
I

KT                                            (15) 

 

 

Define  as the relative angular displacement between the two rotors, that is: 

 

 21    

 

Subtract eqn-15 from eqn-14, and substitute     21  to get: 

 

0
21

21 






 
 

II

II
KT

                         (16) 

 

 

From which we end up with: 

* Natural frequency = 
 

21

21

II

IIKT
n


                                                            (17) 
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* Period of oscillation = 
 21

212
2

IIK

II

Tn 
 




                              (18) 

 

Nodal Point: 

 

        During the oscillation of the system; each rotor rotates in the opposite sense 

of the other one, and the amplitude of the angular rotation of the shaft starts its 

maximum value at each end, and decreases as moving far a way from that one due 

to the influence of the rotor on the other end.  As a result of this, a point along the 

shaft will experience no rotation where each rotor cancels out the effect of the 

other one; this point is called the Nodal Point. 

     This system is equivalent to a similar one in which a fixed wall is positioned at 

the nodal point, while the two rotors oscillate separately with equal periods of 

oscillation, rotor-1 with a shaft of length L1, and rotor-2 with a shaft of length L2. 

 

Mathematically: 

1 = 2 

 
GJ

LI

GJ

LI 2211 22    

 

But: 

21 LLL  , 

 

 L
II

I
L

21

2
1


 ,      L

II

I
L

21

1
2


                                      (19) 
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IV- Experimental Procedures: 

 
Part One- Rotor’s Inertia Determination: 
 

1- Fix one of the rotors to the main frame with its axis of rotation in the horizontal 

direction, and the rotor is free to rotate about it. 

2- Wind the cord around the circumference of the rotor, and attach the small mass 

m to its tip.  Hold the rotor in place, and measure the height of the small mass 

from the ground h. 

3- Release the rotor, and allow the mass to fall freely until reaching the floor.  

Record the elapsed time t. 

4- Repeat the same steps using the other rotor. 

 

 

 

Part Two- Modulus Of Rigidity Determination: 
 

1- Start with the same configuration of the previous part using one of the rotors, 

and use the steel shaft by fitting one of its ends to the rotor, and the other end 

to the main frame at any length L, then record that length. 

2- Add the two Auxiliary masses (Rotors) at both sides of the rotor, with the aid 

of four rectangular bars as demonstrated in Figures-4.2 & 4.4. 

3- Twist the rotor gently then release it to oscillate freely, and record the time 

elapsed to complete ten oscillations T. 

4- Change the length of the shaft L, and repeat steps-2 & 3. 

5- Repeat step-4 another six times to get total eight pairs of L and T. 

6- Do the same with the other rotor in place of first one. 

 

 

 

Part Three- Two-Rotors’ System: 
 

1- Take the two rotors and fix each close to one end of the shaft, and measure the 

distance between them L.  

      (Use a long distance for better observations). 

2- Make a line of chalk along the shaft. 

3- Hold the two rotors at a time, and twist them in opposite sense to each other. 

4- Release them, then measure and record the time elapsed in ten oscillations T. 
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5- Try to identify the nodal point with the aid of the line being established, and 

determine its position with respect to the two rotors; record L1 & L2. 

 

 

V- Collected Data: 
 

Part One- Rotor’s Inertia Determination: 
 
Table-4.1 Data collected for the Rotor’s Inertia Determination part 

Rotor h (cm) t (second) 

Rotor-1   

Rotor-2   

 

 

 

Part Two- Modulus Of Rigidity Determination: 
 
Table-4.2 Data collected for the Modulus of Rigidity Determination part 

Trial Rotor-1 Rotor-2 

L (cm) T (second) L (cm) T (second) 

1     

2     

3     

4     

5     

6     

7     

8     

 

 

 

Part Three- Two-Rotors’ System: 
 
Table-4.3 Data collected for the Two-Rotors’ System part 

Parameter L (cm) T (second) 

Value   
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Basic Parameters And Dimensions: 
 
Table-4.4 Dimensions of the two rotors according to Figure-4.4 

Dimension Rotor-1 Rotor-2 Dimension Rotor-1 Rotor-2 

R1 (mm)   R2 (mm)   

R3 (mm)   R4 (mm)   

t1 (mm)   t2 (mm)   

t3 (mm)   t4 (mm)   

 

 
Table-4.5 Basic parameters of the two rotors shown in Figure-4.4 

Parameter Value Parameter Value 

C1 (mm)  C2 (mm)  

r (mm)  b (mm)  

d (mm)    

 

 

 

VI- Data Processing: 

 
Part One- Rotor’s Inertia Determination: 
 

Apply in eqn-5: 









 1

2

2
2

h

gt
mRI  

 

Evaluate I1 of rotor-1, and I2 of 

rotor-2. 

From the geometry of the two 

rotors, and with the dimensions 

provided and shown in Figure-

4.4 and Table-4.4.  Use eqn-6: 
2MiRiI   

 

Find I1 and I2, and compare the 

results with the experimentally 

obtained values. 
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Part Two- Modulus Of Rigidity Determination: 
 

From the dimensions available 

in Table-4.5, and using eqns-11, 

12 & 13. 

 

Evaluate Ia, Ib, J 

and KT 

Determine IT from eqn-10 

 

Square eqn-9, to get: 

GJ

LI

K

I T

T

T 22 44    

 

Draw 2 versus L 
Slope =

GJ

IT

24
 

 Find G, and compare it   

   with  the standard value. 

 

 

 

 

Part Three- Two-Rotors’ System: 
 

Use eqn-18: 

 21

212
2

IIK

II

Tn 
 




  

 

Evaluate .  Compare it with the 

experimentally obtained 

value. 

From eqn-19: 

L
II

I
L

21

2
1


  

L
II

I
L

21

1
2


  

 

Determine the 

value of L1, L2. 

Compare these values to 

those estimated from the 

observation of the nodal 

point experimentally. 
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VII- Results: 

 
Part One- Rotor’s Inertia Determination: 
 
Table-4.6 Data processing results for the Rotor’s Inertia Determination part 

Rotor I (kg.m2) 

[Eqn-5] 

I (kg.m2) 

[Analytically] 

Percent Error 

() 

Rotor-1    

Rotor-2    

 

 

 

Part Two- Modulus Of Rigidity Determination: 
 
Table-4.7 Data processing analysis for the 

Modulus of Rigidity Determination part 

Parameter Value 

Ia (kg.m2)  

Ib (kg.m2)  

J (m4)  

KT (N.m/rad)  

 

 
Table-4.8 Data processing analysis for the Modulus of Rigidity Determination part 

Rotor-1,     IT = ……………(kg.m2) 

Trial L (cm)  (second) 2 (second2) 

1    

2    

3    

4    

5    

6    

7    

8    
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Table-4.9 Data processing analysis for the Modulus of Rigidity Determination part 

Rotor-2,     IT = ……………(kg.m2) 

Trial L (cm)  (second) 2 (second2) 

1    

2    

3    

4    

5    

6    

7    

8    

 

 
Table-4.9 Data processing results for the Modulus of Rigidity Determination part 

Rotor Slope (kg/N) G (Gpa) Percent Error 

() 

Rotor-1    

Rotor-2    

 

 

 

Part Three- Two-Rotors’ System: 
 
Table-4.10 Data processing results for the Two-Rotors’ System part 

Parameter Theoretically Experimentally Percent Error 

() 

 (second)    

L1 (cm)    

L2 (cm)    
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VIII- Discussion And Conclusions: 
 

1) Where and why do we use flywheels? Give practical examples. 

 

 

 

 

 

 

 

 

2) In determining the value of G; several period readings have been taken to draw 

a graph, and from its slope G was found.  Why do not we take discrete 

reading(s) and apply directly in eqns-9 & 13 to find G?  What are the benefits 

of making such a graph? 

 

 

 

 

 

 

 

 

3) Does the nodal point have the maximum or minimum stresses along the shaft, 

why? 

 

 

 

4) Discuss the factors affecting the period of oscillation of a Two-Rotors’ 

System? 

 

 

 

 

5) You are given a system of a similar layout as the one shown in Figure-4.2; in 

which the rotor has an unknown inertia, and fitted to the end of a shaft of an 

unknown material, with a number of different couples of auxiliary masses 

available.  Describe (with the necessary equations) how to find both G and I 

with such a set-up? 
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Forced Vibrations with Negligible Damping 
 

 

I- Introduction: 
 

        Forced Vibrations is that mode of vibrations in which the system vibrates 

under the action of a time-varying force, generally; a harmonic external excitation 

of the form: )sin()( tFtf  . 

The importance of this mode rises in the practical field, as machines, motors and 

other industrial applications, exhibits this mode of vibrations, which may cause a 

serious damage of the machine. 

  

 

 

II- Objectives: 
 

        In this experiment, we will apply both modes of vibrations; free and forced 

modes of vibrations, on a system in order to: 

 

1- Evaluate of the natural frequency of the system using the following methods: 

1) Equation of motion. 

2) Time measurements. 

3) Drum speed. 

4) Resonance observation. 

And the results of the various methods will be compared with the analytical value 

from the equation of motion. 

 

2- Study the response of the system under the action of a time-varying force, then 

to determine and compare the magnification factor obtained both theoretically 

and experimentally. 

 

 

 

III- System Description: 
 

        The system to be used in the experiment is shown in Figure-5.1, which 

consists of a regular rectangular cross-section beam of mass Mb, length L, width w 

and thickness t; pinned at one end to the main frame at point O, where it is free to 
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rotate about, and suspended from point S by a linear helical spring of stiffness K at 

distance b from point O. 

     A motor with mass (M = 4.55 kg) is fitted on the beam at distance a from pivot 

point O, and drives two circular discs with total eccentric mass m at distance e 

from the centre of the disc (The eccentric mass is obtained from a hole in each 

disk with radius r and thickness td).  When the motor rotates these discs with speed 

, a harmonic excitation is established on the beam, and as a result of that, the 

beam vibrates in the vertical plane with angle (t) measured from the horizontal 

reference direction. 

        The free end of the beam carries a pencil that touches a rotating cylinder 

(drum) with a strip of paper covering it, so that you can draw the vibrations of the 

beam for a given period of time. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure-5.1 General layout of the experiment set-up 

 

 

 

IV- Governing Equations: 

 
Part One- Free Vibrations: 
 

1) Referring to the system shown in Figure-5.1, with the motor is not operated; by 

giving the system an initial displacement and then leaving it to oscillate freely, 

the system will exhibit a free mode of vibrations, and the equation of motion in 

such case is obtained by taking the summation of moments about point O as 

follows: 

 

02   KbI                            (1) 

b

L

a

K

t

Motor 

M



Beam

M b

O S
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From which the natural frequency is found to be: 

I

Kb
n

2

                            (2) 

where:- 











3

2
2 L

MMaI b                                              (3) 

 

3

4

8ND

Gd
K     (For a helical spring)                                                     (4) 

 

 

2) Also from time measurements, the natural frequency is equal to: 

 






2
n                                                                             (5) 

 

 

3) Doing the same as in (1), in addition to getting the drum in touch with the   

pencil at the end of the beam, a graph of the oscillations of the beam can be 

obtained by rotating the drum.  And so, we can say that: 

 

V

C
                                                 (6) 

 

where:- 

     C is the distance travelled per cycle. 

     V is the circumferential velocity of the drum. 

 

And again, the natural frequency is obtained from eqn-5. 

 

 

 

Part Two- Forced Vibrations: 
 

        When the motor is in operation, the beam will be imposed to a harmonic 

excitation due to the eccentric mass in each disk.  This harmonic excitation will 

have the form: 

 

)sin()sin()( 2 tmetFtf                                    (7) 
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In this case, the equation of motion of the system is altered by: 

 

)sin(22 tameKbI                                                                   (8) 

Let )sin()( tt   , then the solution of the differential equation in (8) gives the 

amplitude of the angular displacement of the beam  as: 

 

22

2





AIKb

mea


                                    (9) 

 

 

And so, the vertical displacement of the end of the beam Y will be: 

 

22

2





AIKb

meaL
LY


                        (10) 

 

 

 

Magnification Factor: 

 

        Magnification Factor MF is the ratio between the dynamic amplitude of 

oscillation and the static amplitude of the same mode of displacement (degree of 

freedom).  And for this case, it is expressed as: 

 

Static

Dynamic

Y

Y
MF                (11) 

 

where: 

DynamicY , is given by eqn-10 above. 

 

2

2

Kb

meaL
YStatic


              (12) 

 

 

Substitute for DynamicY  and StaticY  in eqn-11, and rearrange to get: 

 

21

1

r
MF


               (13) 

 

where: 
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n

r



  is the frequency ratio. 

 

 

V- Experimental Procedures: 
 

1- Use the system described above while the motor is turned off, and give the 

beam a small vertical displacement, then release it to oscillate freely for ten 

oscillations.  Record the elapsed time T. 

2- Bring the drum in slight touch with the pencil at the end of the beam, after 

attaching the roll of paper to the drum, and then give the beam a small pulse to 

oscillate freely as before with the drum is held fixed. 

3- Turn the motor of the drum on, and after ten seconds stop it and remove the 

chart for using it in the calculations. 

4- Return to the original system by separating the drum from the pencil, and 

switch the motor on at a relatively slow speed. 

5- Increase the speed of the motor slowly and notice the response of the system, 

and at the same time; try to identify the point at which resonance takes place 

(When the largest amplitude of vibrations is noticed).  Record the speed of the 

motor at that state Nr. 

6- Attach the paper roll again to the drum, and make the pencil in touch with the 

drum.  Activate the motor and set it to any desired speed (Choose one that 

gives an appreciable amplitude of vibrations in the beam), and record that 

speed N. 

7- Rotate the drum again for a while, and take the response curve obtained for the 

subsequent calculations. 

 

 

 

VI- Collected Data: 
 

 

 

 

 

 
 

 

 

 

 
Figure-5.2 Nomenclature of the coil spring and the rotating disc 

Eccentricity

e

Hole radius

r

Disk

Wire diameter

d

Spring

Coil dimeter

D
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Basic Parameters And Dimensions: 
 
Table-5.1 Basic dimensions and parameters according to Figures-5.1& 2 

Beam 

Parameter Value Parameter Value 

L (cm)  b (cm)  

w (mm)  t (mm)  

 

Motor, Rotating Disks 

Parameter Value Parameter Value 

a (cm)  r (mm)  

e (mm)  td (mm)  

 

Spring 

Parameter Value Parameter Value 

D (mm)  d (mm)  

N (turns)    

 

 
Table-5.2 Data collected from the experiment 

Free Vibrations Part 

Parameter Value 

T (second)  

C [from the first chart] (mm)  

V = C/10 (m/s)  

 

Forced Vibrations Part 

Parameter Value 

Nr (rpm)  

N (rpm)  

A [amplitude of the second chart] (mm)  
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VII- Data Processing: 

 
Part One- Free Vibration: 
 

From the dimensions 

provided, and using 

eqns-3 & 4. 

 

Find Mb, I and K. Apply in eqn-2 to find 

the theoretical natural 

frequency n-theor 

From T find , as: 

10

T
   

 

From eqn-5, find n. Compare it with n-theor. 

Calculate the velocity 

of the drum V, and use 

eqn-6 to find . 
 

Apply again in eqn-5 to find 

n. 

Compare it with n-theor. 

 

 

 

Part Two- Forced Vibration: 
 

For the speed of the 

motor at resonance Nr, 

find the equivalent 

angular frequency of 

the motor . 

 

This frequency will be equal to 

the natural frequency of the 

system n. 

Compare it with n-theor. 

From the value of N at 

which the second chart 

has been plotted, find 

the corresponding 

angular frequency . 

1) Evaluate the frequency ratio  

    r using n-theor, and apply   

    eqn-13 to evaluate MF. 

2) From eqn-12, find StaticY , 

and from the second chart 

evaluate DynamicY , then apply in 

eqn-11 to evaluate MF. 

 

Compare the results of 

the two ways. 

 



 
 
 

 

62 

 

 

 

 

VIII- Results: 
 
Table-5.3 Data processing analysis 

Parameter Value 

Mb (kg)  

I (kg.m2)  

K (N/m)  

 

 
Table-5.4 Results of the natural frequency by the various methods 

Method Natural Frequency 

n (rad/sec) 

Percent Error 

() 

Analytical (E.O.M)   

Time Measurements   

Drum Speed   

Resonance Observation   

 

 
Table-5.5 Magnification Factor MF results 

Methode-1  (rad/sec) r (/n) MF Percent Error 

()    

Methode-2 Ydynamic (mm) Ystatic (mm) MF  

   

 

 

 

IX- Discussion And Conclusions: 
 

1) What is the meaning of the Static Amplitude of oscillation? In this case, derive 

the expression of (Ystatic) given in eqn-12? 
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2) Draw the magnification factor MF versus frequency ratio r for the system, for 

this mode of forced vibrations (Rotating Unbalnce)? 

Draw the expected ideal curve for this case, and another one based on your 

expectations for the real case, showing the deviations from the ideal one. 

 

 

 

 

 

 

 

 

 

 

3) According to your observations and plot in the previous question, did the 

amplitude of oscillations reach a very high value at resonance? If not, why? 

 

 

 

 

 

 

 

4) In the derivation of the equation of motion for the system, why did not we 

consider the effect of the gravitational forces (weights of its components) 

although they have moments about point O? 

 

 

 

 

 

 

 

 

5) For a practical system like a machine, suffering from such mode of vibrations, 

how could you modify its parameters ( or ), or add other components, in a 

way that minimises vibrations level? 
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Static & Dynamic Balancing 
 

 

I- Introduction: 
 

        Balancing is an essential technique applied to mechanical parts of rotational 

functionality (wheels, shafts, flywheels…), in order to eliminate the detected 

irregularities found within it, and that may cause excessive vibrations during 

operation, and act as undesirable disturbances on the system being in use.  Such 

irregularities may rise due to the inhomogeneous distribution of material within 

the part, bending and deflection of rotating shafts, and eccentricity of mass from 

the axis of rotation of the rotating disks and rotors. 

        These irregularities lead to small eccentric masses that disturb mass 

distribution of the part, and the last generate centrifugal forces when the part is in 

rotation; the magnitude of these forces increases rapidly with speed of rotation, 

and enhances vibrations level during operation, and cause serious problems. 

 

 

 

II- Objectives: 
 

        This experiment is established in order to introduce and interpret the general 

features of balancing technique, in addition to familiarise the student with the 

basic steps in applying both static and dynamic balancing techniques on 

unbalanced mechanical parts. 

 

 

 

III- Technique Presentation: 

 
Part One- Static Balancing: 
 

        Static Balancing simply means the insurance of mass distribution about the 

axis of rotation of the rotating mechanical part in the radial directions, without 

consideration of that distribution in the axial (longitudinal) direction. 
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        To illustrate this; consider a circular disk of perfect mass distribution, with 

the points A and B are at two opposite positions on the circumference of the disk, 

but each is on one of the faces of the disk, and suppose that a point mass with the 

same value is fixed at each of the two points A and B. 

Generally, static balancing looks to the part in the direction of its axis of rotation, 

so in this case, as the two eccentric masses at A and B are in opposite positions 

with equal distances from the central axis, the disk is considered statically 

balanced although these masses are at different axial positions. 

 

        Practically, static balancing is performed by taking the part like a disk with its 

axis of rotation oriented horizontally, and rotating it several times; and at the end 

of each run after getting stable, a mark is made in the lower part of the disk on one 

of its faces.  If the different marks are distributed randomly over the circumference 

of the disk, then the disk is of good mass distribution and considered balanced; but 

in the case that they accumulate in a small region, it is realised that there is a mass 

concentration in that part of the disk, and this can be treated either by taking small 

mass from there, or by adding mass to the opposite position of the disk. 

 

        Static Balancing Machine shown in Figure-6.1 below is used for faster and 

more accurate static balancing operations.  The machine is simply a pendulum, 

that is balanced and stable in a vertical configuration with no loading, and free to 

tilt in all directions about a ball joint; but when the pendulum is loaded with an 

unbalanced disk on its platform, it tilts by some angle from the original 

orientation.  The side to which it tilts shows the position of the eccentric mass, and 

the angle by which it tilts  is proportional to the magnitude of that eccentric mass 

to be compensated. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure-6.1 Schematic representation of the Static Balancing Machine 
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        From the previous discussion, the only condition to be satisfied for static 

balancing to be achieved is that:- 

“The resultant force of all the forces caused by the rotation of the out of balance 

masses, in a given rotating part should be zero”, that is: 

 

0 iF


                 (1) 

 

 

The force Fi is given by: 

 
2 iiemFi                                         (2) 

 

 where; mi is the out of balance mass (eccentric mass). 

             ei is the distance from axis of rotation (eccentricity). 

              is the angular speed of the part. 

 

(Note: eqn-1 is a vector equation, in which each force is a vector of a magnitude 

given by eqn-2, and direction denoted by the angle i, measured from the 

reference horizontal direction). 

 

 

 

Part Two- Dynamic Balancing: 
 

        Dynamic Balancing differs from static balancing in that the mass distribution 

of the part is detected in all directions, and not only about the central axis; and so, 

not only the magnitude of the unbalanced mass and its distance from the axis of 

rotation are to be determined, but also its position in the axial (longitudinal) 

direction of the rotational part. 

 

        To illustrate the meaning of this, consider a disk rotating with an angular 

speed , with different out of balance masses mi, each with eccentricity ei from the 

axis of rotation.  These masses are not expected to be in the same plane, but in 

different locations along the disk’s axial direction; in addition, each mass will 

produce a centrifugal force making an angle i with the reference horizontal 

direction in its own plane. 

The system described previously and shown schematically in Figure-6.2, can be 

easily treated by choosing any plane as the reference for the other planes 

containing the eccentric masses, such that each one of them is at distance ai from 

that reference plane. 

And for simplicity, choose plane-1 as the reference plane, where a1 becomes zero. 
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        Generally, for the dynamic balancing of a system to be achieved, then: 

“The resultant force of all centrifugal forces caused by the out of balance masses 

should be zero (as in static balancing), in addition to that the summation of their 

moments about any point should be also zero”, that is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-6.2 General case of a 3-D system to be dynamically balanced 

 

 

0 iF


                 (1) 

 

0 iM


                 (3) 

 

 

And again, the forces in eqn-1 are given by eqn-2, and the moments in eqn-3 are 

given by: 

 
2 iii emaMi                              (4) 

 

 

        And so, after choosing a reference plane, translate all the centrifugal forces in 

the other planes to that plane as forces (miei2) and moments (aimiei2), and there 

you can apply the vector summation of forces and moments separately to satisfy 

the requirements of dynamic balancing mentioned in eqns-1 & 3. 
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IV- System Description: 
 

        The system we are dealing with is shown in Figure-6.3, which consists of 

four blocks with the same geometry and dimensions, but each has a different size 

hole and so different eccentric mass.  The four blocks are spaced along a shaft 

driven by an electrical motor, where each is fixed at distances Si from its end, with 

angle i measured from the horizontal direction. 

The electrical motor is attached to the shaft by a flexible belt, and provides the 

shaft with rotation at various speeds; The shaft and the four blocks are carried on a 

circular table, which is attached to the rigid frame by flexible mountings that 

permits the sense of vibrations during the operation of the system. 

 

        The system in hand is to be balanced using the principles outlined before.  

The dimensions of all the blocks are provided, while the angular orientation and 

the distance from the end of the shaft are given for the first two blocks only; and 

so, you have to find the missing parameters of the other two blocks analytically, 

such that balancing state is accomplished. 

 

 

 

V- Governing Equations: 
 

        In this experiment, the major formulas to be used have been given in eqns-1, 

2, 3 & 4; and according to the given system, eqns-1 & 3 can be extracted to: 

 

04321  FFFFFi


 

 0coscoscoscos 444333222111   emememem                                         (5) 

 0sinsinsinsin 444333222111   emememem                                           (6) 

 

 

04321  MMMMM i


 

 0coscoscoscos 4444333322221111   emaemaemaema                            (7) 

 0sinsinsinsin 4444333322221111   emaemaemaema                              (8) 
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        To find the eccentric mass m and the eccentricity e for each block, then: 

According to Figure-6.4 shown below, by assuming that the sector removed from 

the circle of diameter D1 contributes approximately 90 of the full circle, then the 

eccentric mass and its eccentricity can be expressed by the following formulas, 

respectively: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-6.4 Nomenclature of the blocks 
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VI- Experimental Procedures: 
 

1- Take all the dimensions and perform your calculations as will be demonstrated, 

and complete balancing process of the rotating shaft by finding the missing 

variables. 

2- Fix the four blocks on the rotating shaft with the corresponding longitudinal 

distances from its end ai, and the angular orientations , according to your 

balancing calculations. 

3- Connect the shaft to the motor through the flexible belt. 

4- Run the motor, and vary its speed to observe the vibrations of the system. 

 

        According to your calculations, this configuration of the four blocks on the 

shaft should give a balanced rotating system, and you can check it out from the 

behaviour of the system as it should not generate any vibrations, and rotates 

smoothly. 

To differentiate the behaviour of a balanced system from an unbalanced one, you 

can disturb the configuration of the four blocks with respect to each other (change 

a or/and ), and rotate the shaft again, then notice the vibrations or fluctuations of 

the system. 

 

 

 

VII- Collected Data: 
 
Table-6.1 Basic dimensions of the four blocks 

Differentiated Dimensions Among the Four Blocks 

Block (1) (2) (3) (4) 

D2 (mm)     

C2 (mm)     

 

Shared Dimensions Among the Four Blocks 

Parameter Value Parameter Value 

D1 (mm)  C1 (mm)  

L1 (mm)  L2 (mm)  

t (mm)  w (mm)  

b (mm)  d (mm)  

 
Table-6.2 Data obtained concerning the first two blocks-1 & 2 

Block  (˚) S (mm) 

(1)   
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(2)   

VIII- Data Processing: 
 

Use the dimensions 

measured, and apply in 

eqns-9 & 10 to find m and 

e for each block. 

 

Determine the quantity 

me for the four blocks. 

Determine the quantity 

ame for blocks-1 & 2. 

Note: 

a1 = 0   a1m1e1 = 0. 

 

On a graph paper, draw to 

scale from the origin the 

vector m1e1 at the angle 1, 

and then continue from its 

tip with the vector m2e2 at 

angle 2. 

From the end of the 

second vector, draw a 

circle with radius m3e3, 

and from the origin draw 

a circle of radius m4e4. 

Join the intersection point 

of the two circles with the 

end of vector-2 to get 

vector-3, and join it with 

the origin to get vector-4. 

Measure the angles of the 

two vectors 3 and 4. 

 

On another graph paper, 

draw from the origin the 

vector a1m1e1 at the angle 

1, and then continue with 

a2m2e2 at 2. 

From the end of the 

second vector, draw a 

line at angle 3, and from 

the origin another one at 

angle 4. 

The intersection of them 

identifies vectors-3 & 4, 

and their lengths are 

a3m3e3 and a4m4e4, 

respectively. 

And so, you can find a3 

and a4, then S3 and S4, 

according to your scale. 

 

 

 

      The previous method outlined is a graphical method, and you can obtain more 

accurate results by solving eqns-5 & 6 simultaneously, to find 3 and 4, and then 

eqns-7 & 8 to get a3 and a4. 

 

 

* Note that: 

1SSa ii  , as we have chosen plane-1 as the reference plane. 
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IX- Results: 
 

 
Table-6.3 Data processing analysis 

Block m (kg) e (mm) me (kg.m) ame (kg.m2) 

(1)     

(2)     

(3)    ------------------- 

(4)    ------------------- 

 

 
Table-6.4 Data processing results 

From the two graphs: 

Block  (˚) ame (kg.m2) a (mm) 

(3)    

(4)    

 

 

 

X- Discussion And Conclusions: 
 

1) Name some practical examples in which balancing technique is necessary, and 

so employed? 

 

 

 

 

 

 

 

 

2) For the disk mentioned in the example of static balancing technique, it was 

shown that it is statically balanced.  Based on that description is it also 

dynamically balanced? Why? 
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3) It can be easily concluded that static balancing dose not imply dynamic 

balancing.  Describe how can you check that with the system used in the 

experiment, after being balanced? 

 

 

 

 

 

 

 

 

4) Could we consider static balancing technique an adequate alternative for 

dynamic balancing in some special cases? If yes, explain when and give a 

practical example? 

 

 

 

 

 

 

 

 

5) You are given a build-in system that you cannot change its configuration; like a 

shaft loaded with parts of known eccentric masses, at fixed separating 

distances and with fixed angular orientations.  How could you balance such a 

system? 

 

 

 

 

 

 

 

 

6) Comment on your observations concerning the behaviour of the system, when 

you had tested your balancing calculations experimentally? 
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Mass-Spring System 
 

 

I- Objectives: 
 

1) To determine the stiffness of a helical spring using two methods; 

-Deflection curve and Hook’s Law. 

-Time measurements. 

Then to compare their results with the analytical value. 

2) To find the effective mass of the spring that has been used. 

3) To evaluate the gravitational acceleration constant g. 

4) To estimate the value of the modulus of rigidity G for the material of the 

helical spring, and compare it with the standard value for steel. 

 

 

 

II- System Description: 
 

        The spring-mass system in 

Figure-7.1 shows an extension  

linear helical spring with an initial 

free length Li, effective mass mS,  

supported vertically from one of  

its ends; while the other end is  

free to elongate and attached to a  

load-carrier of (mC = 1.47 kg) 

mass. 

The free length of the spring  

loaded with the load carrier alone 

is Lo. 

        Disks each of (md = 0.4 kg)  

mass are added to the carrier  

gradually, and each loading state  

causes the spring to elongate by  

the distance  from its unloaded  

length Lo to get a total length of L. 

 
                                                                      Figure-7.1 General layout of the experiment set-up 
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L
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III- Governing Equations: 
 

        For the spring-mass system shown in Figure-7.1, in the case of free vibration 

in the vertical direction Y, the equation of motion of the system is given by: 

 

0 KyyM                                                 (1) 

 

where: 

M is the total mass of the system, and equals to: 

SC mmmM   

 

m is the total mass of the disks 

dmm   

 

 

From the equation of motion, we can find that: 

* Natural frequency=
M

K
n                                                                              (2) 

* Period of oscillation=
K

mmm

K

M SC

n


 




 22

2
                               (3) 

 

 

For the linear spring following Hook’s law, then: 

 

KFS                                      (4) 

 

But for the present system, the spring force FS is also given by: 

 

mgFS                                      (5) 

 

 

Combine eqns-4 & 5, to get: 

 
g

K
m                                 (6) 

 

 

For a helical spring, the stiffness is expressed analytically as: 

 

3

4

8ND

Gd
K                                   (7) 
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IV- Experimental Procedures: 
 

1) Hang the spring vertically with the load carrier attached to its end, and then 

measure the total length of the spring Lo. 

(This length is not the initial free length of the spring Li) 

2) Add one disk to the carrier (m = md), and measure the total length of the spring 

after elongation L. 

3) With this loading, stretch the spring downward, then leave it to oscillate freely 

and record the time needed to complete ten oscillations T. 

4) Add another disk so that (m = 2md), and repeat steps-2 & 3. 

5) Continue by adding a disk each time for total ten disks (m = 10md), and each 

time measure the parameters L and T. 

 

 

 

V- Collected Data: 
 
Table-7.1 Data collected from the experiment execution 

Trial m (kg) L (cm) T (second) 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

 

 
Table-7.2 Dimensions and parameters of the spring 

Parameter Value 

N (turns)  

D (mm)  

d (mm)  

Lo (cm)  
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VI- Data Processing: 
 

Square eqn-3, to get: 

 SC mmm
K


2

2 4
  

Draw 2 versus m as 

shown in Figure-7.2. 
1) Slope 

K
S

2

1

4
  

     K is determined. 

2) Intercept with the vertical   

    axis  SCInter mm
K

Y 
24

 

     mS is determined. 

3) Intercept with the horizontal  

     axis  SCInter mmX    

     mS is verified. 

From eqn-6: 


g

K
m   

Draw m versus  as the 

one shown in Figure-

7.3. 

Slope 
g

K
S 2  

 K is also obtained. 

 

Multiply the slopes of the 

previous two steps. 

You get the value: 

g
SS

2

21

4
  

 g is found, and compared to 

the standard value. 

 

Use eqn-7: 

3

4

8ND

Gd
K   

Find K directly. Compare the two experimental 

values of K obtained before, 

with this theoretical value. 

 

Square eqn-3, and 

eliminate K using eqn-7, 

then: 

 SC mmm
Gd

ND











4

32
2 32

  

Using Figure-7.2 of 2 

versus m. 
Slope =

4

3232

Gd

ND
, 

 Determine G, and compare 

it with the standard value for 

steel. 
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VII- Results: 
 
Table-7.3 Data processing analysis 

Trial m (kg)  (mm)  (second) 2 (second)2 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

 

 
Table-7.4 Data processing results 

Spring Stiffness K 

K (theoretical) = …………… (N/m) 

From: Slope K (N/m) Percent Error () 

Figure-3    

Figure-4    

 

Spring Effective Mass ms 

From Figure-7.2: 

YInter (kg.m/N)  ms (kg)  

XInter (kg)  ms (kg)  

 

Gravitational Acceleration g 

From Figures-

7.2 & 4 

S1S2 (sec2/m) g (m/sec2) Percent Error () 

   

 

Modulus Of Rigidity G 

From  

Figure-7.2 

Slope (m/N) G (Gpa) Percent Error () 
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VIII- Discussion And Conclusions: 
 

1) What is the physical meaning of the Effective Mass of a spring? Is there an 

effective mass for Torsion springs? 

 

 

 

 

 

 

2) Derive a formula for the effective mass of a linear helical spring ms in terms of 

its total mass Ms? 

 

 

 

 

 

 

 

 

3) Use the dimensions of the spring to estimate its volume and total mass (by 

approximate calculations), and apply in the formula derived above to find its 

effective mass. Verify your experimental results. 

 

 

 

 

 

 

4) In eqn-5 mgFS  , why didn’t we equate the spring force FS with the total 

weight of the system Mg? 

 

 

 

 

 

5) In determining the stiffness of the spring using the deflection curve of Figure-

7.3, what is the essential implicit assumption that has been made? How could 

you ensure that you did not violate it in the experiment using your graph? 
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Centrifugal Force 
 

 

I- Objectives: 
 

        In this experiment, the factors affecting the magnitude of the centrifugal force 

are to be studied separately 

 

 

 

II- System Description: 
 

        Figure-8.1 below shows the layout of the system to be used in this 

experiment, in which a circular table is attached to an electrical motor, which 

drives it with rotational speed , and carries two blocks at opposite sides from the 

axis of rotation, each one can slide over a diametric rectangular way towards or 

away from the centre of the table. 

Each block possesses a spider free to rotate about the axis passing through point O, 

at distance r from the axis of rotation.  The two masses ma and mb are fixed at the 

two ends of the spider, each at a side from that axis, at distances ra and rb, 

respectively. 

        In the state of rotation, each upper mass ma experiences a centrifugal force 

that tries to push it radial outwards, producing a moment that counteracts the 

moment caused by the weight of the lower mass mb.  By increasing the speed of 

rotation , the centrifugal force builds up until it reaches the required value to 

overcome the moment of the gravitational force; and there, the spider turns over. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure-8.1 General layout of the experiment set-up 
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
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III- Governing Equations: 
 

        In the system shown in Figure-8.1, when the table rotates with an angular 

speed , then: 

The summation of moments about point O will be: 

 

    aabb rrmrgmM 2                                   (1) 

 
At equilibrium state, at which the spider is just to turn over, the summation of 

moments about O becomes zero; and as the arms of the spider are of equal lengths 

(ra = rb), eqn-1 yields: 

 
2rmgm ab                                                          (2) 

 

 

        That is at equilibrium; the centrifugal force acting on the upper mass ma, 

should be equal to the weight of the lower mass mb.  And so you can evaluate the 

centrifugal force by either sides of eqn-2. 

 

 

 

IV- Experimental Procedures: 
 

1) Prepare the system shown in Figure-8.1 with (r = 12.5 cm), (ma = 25 gm) & 

(mb = 25 gm). 

2) Switch the motor on at low speed, and then increase its speed slowly.  During 

this, keep listening carefully until you hear a knocking sound, and there fix the 

speed and record it. 

This sound indicates that the spider has turned over, and so equilibrium has been 

reached. 

3) Keep r and ma unchanged, and increase the value of mb to (50, 75 and 100 gm), 

respectively.  Repeat step-2 for each of the three cases. 

4) With the same radius (r = 12.5 cm); increase ma to (50 gm) then to (75 gm).  

And for each one of them, repeat step-2 another four times corresponding to 

the same four values of mb (25, 50, 75 and 100 gm). 

5) Fix ma at (25 gm), and reduce the radius r to (9.5 cm) then to (8 cm); and again 

for each one of the two radii, repeat step-2 four times, one corresponding to a 

value of mb (25, 50, 75 and 100 gm). 

 

Note: In each case before you run the motor, cover the table with the Safety Dome; 

this dome is a transparent plastic dome for protection during operation, and the 

motor switches of if it is not in place. 
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V- Collected Data: 
 

 
Table-8.1 Data collected (speed of motor) for the mentioned states 

ma = 25 gm,     r = 12.5 cm 

Trial mb (gm) Speed (rpm) 

1 25  

2 50  

3 75  

4 100  

 

ma = 50 gm,     r = 12.5 cm 

Trial mb (gm) Speed (rpm) 

1 25  

2 50  

3 75  

4 100  

 

ma = 75 gm,     r = 12.5 cm 

Trial mb (gm) Speed (rpm) 

1 25  

2 50  

3 75  

4 100  

 

ma = 25 gm,     r = 9 cm 

Trial mb (gm) Speed (rpm) 

1 25  

2 50  

3 75  

4 100  

 

ma = 25 gm,     r = 8 cm 

Trial mb (gm) Speed (rpm) 

1 25  

2 50  

3 75  

4 100  
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VI- Data Processing: 
 

        For each case mentioned before and presented in details in Tables-8.1 & 2, 

find the centrifugal force using the two terms (sides) of eqn-3.  Then compare the 

two values as the left hand side represents the theoretical value, while the right 

hand side is the experimental one. 

 

 

 

VII- Results: 
 

 
Table-8.2 Data processing results 

ma = 25 gm,     r = 12.5 cm 

Trial mb  

(gm) 
 

(rad/sec) 

mbg  

(N) 
mar2  

(N) 

Percentage 

Error () 

1 25     

2 50     

3 75     

4 100     

 

ma = 50 gm,     r = 12.5 cm 

Trial mb  

(gm) 
 

(rad/sec) 

mbg  

(N) 
mar2  

(N) 

Percentage 

Error () 

1 25     

2 50     

3 75     

4 100     

 

ma = 75 gm,     r = 12.5 cm 

Trial mb  

(gm) 
 

(rad/sec) 

mbg  

(N) 
mar2  

(N) 

Percentage 

Error () 

1 25     

2 50     

3 75     

4 100     
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ma = 25 gm,     r = 9 cm 

Trial mb  

(gm) 
 

(rad/sec) 

mbg  

(N) 
mar2  

(N) 

Percentage 

Error () 

1 25     

2 50     

3 75     

4 100     

 

ma = 25 gm,     r = 8 cm 

Trial mb  

(gm) 
 

(rad/sec) 

mbg  

(N) 
mar2  

(N) 

Percentage 

Error () 

1 25     

2 50     

3 75     

4 100     
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VIII- Discussion And Conclusions: 
 

1) From the results obtained in Table-8.2, draw the following graphs: 

- (FCentrifugal versus mb) at constant r, and variable ma. 

- (FCentrifugal versus mb) at constant ma, and variable r. 

- (FCentrifugal versus ) at constant r, and variable ma and mb. 

 

 

2) Give some typical examples in which the concept of the centrifugal force is 

employed in practical applications? 

 

 

 

 

 

3) What is the difference between centrifugal and centripetal force? 

 

 

 

 

 

 

4) When performing the experiment, you increase the speed of the motor slowly 

until you hear knocking sound where the spider turns over.  At that instant, if 

you try reverse the process and return to the original position, you will observe 

that it needs a large reduction in the speed of the motor, and not slight as in the 

forward one. Explain why? 

 

 

 

 

 

 

5) For Automobiles to move on circular baths safely, it is considered in their 

design to have a wide base and low height (separation from ground). Explain? 
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Simple Spring-Mass-Damper System 
 

 

I- Introduction: 
 

        Generally speaking, vibratory systems consist basically of: 

potential energy storing element (Stiffness), kinetic energy storing element (Mass 

or Inertia) and energy dissipation element (Damping). 

        Damping effect in vibratory systems may be caused by surface friction 

between adjacent moving parts (dry friction), or due to plastic deformation and 

internal friction between layers of the material of the part (structural damping); 

and these two categories may not be eliminated perfectly, as they are 

uncontrollable.  The third source of damping in vibrations is the use of mechanical 

viscous dampers, and this type with determinate value of damping is used to get 

the required damping effect.  Generally, the first two types can be ignored in the 

analysis of vibrations under certain conditions, and a system under vibrations is 

treated as an un-damped vibrations case unless viscous dampers are employed. 

 

 

 

II- Objectives: 
 

        In this experiment, a simple spring-mass-damper system is to be studied, in 

order to determine the damping coefficient C by two methods: 

 Decaying curve method. 

 Falling weight method. 

 

 

 

III- System Description: 
 

        Figure-9.1 shows the system to be studied, which consists of a carriage of 

total mass (M = 1.6 kg), that slides vertically up and down over two guide bars, 

while attached from its upper side by a spring of stiffness K, and from its lower 

side by a dashpot damper with damping coefficient C; the spring and the damper 

are fixed to the main frame.  The mass of the carriage can be increased by adding 

unit masses (each of 1 kg), as shown in the figure. 

        The dashpot used consists of two circular disks immersed in a container filled 

with oil; the lower disk has six equally-spaced holes, and attached directly to the 

carriage, while the upper one is solid, and able to turn around such that it 

approaches or departs from the lower one.  The coefficient of damping of the 

dashpot varies according to the spacing between the two disks. 
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A rotating drum is provided beside the assembly, with a pencil attached to the 

carriage and in touch with the paper wrapped around the drum; this enables us to 

get the curve of motion for the carriage. 

        The whole system of the carriage, the spring and the dashpot can be 

represented schematically by a simple series combination of spring, mass and 

damper as also shown in Figure-9.1. 

 

 

 

IV- Governing Equations: 
 

        By giving the system shown schematically in Figure-9.1 an initial vertical 

displacement Y, it will vibrate freely with a time-varying function y(t), and the 

resulting equation of motion will be: 

 

0 KyyCyM                           (1) 

 

 

To solve for y(t); let stYety )( , then the auxiliary equation and its solutions are: 

 

02  KCsMs  

 
M

K

M

C

M

C
s 

2

2

42
                        (2) 

 

 

Substitute in y(t), to get: 

 
tStS

eYeYty 21

21)(   

 














































t
M

C

M

K
At

M

C

M

K
Aety

t
M

C

2

2

22

2

1
4

cos
4

sin)(                                  (3) 

 

 

But: 

nCritical M

C

KM

C

C

C




22
                                (4) 

 

 

Then, eqn-3 becomes: 

 

     tAtAety nn

tn 2

2

2

1 1cos1sin)( 


                                            (5) 
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Part one- Decaying Curve Method: 
 

 

 

 

 

 

 

 

 

 

 
Figure-9.2 Decaying curve of a typical vibratory system for under-damping case 

 

 

        Considering a typical decaying curve as the one shown in Figure-9.2 above, 

then the ratio of the amplitude Yo corresponding to the time t = to, to the amplitude 

Yn at time t = to + n, is given by:- 

 

 
dn

don

on

n

nt

t

n

o e
e

e

Y

Y 










                        (6) 

 

Define the Logarithmic Decrement  as: 

 













n

o

Y

Y

n
ln

1
                           (7) 

 

Eliminate 










n

o

Y

Y
ln from eqns-6 & 7, to obtain an expression for  as: 

21

2







 dn  

 
22 4





                                    (8) 

 

 

Then eqn-4 is used to find the damping coefficient, where: 

M

K
n                                                                                                                 (9) 

3

4

8ND

Gd
K                                               (10) 

Drum's direction of rotation

Yo

Yn

Y1



n-cycles
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Part Two- Falling Weight Method: 
 

        In the original system used before, if the spring were removed leaving only 

the mass and the damper, and the new assembly is pulled up and then left to fall 

down freely; then the only force that will act against the motion due to the weight 

of the mass is the resistive damping force of the dashpot. 

For dynamic equilibrium state to be reached, these two forces should be equal, 

That is: 

 
CVMg   

 
V

Mg
C                                                           (11) 

 

where; V is the velocity of the falling carriage. 

 

 

        The velocity of the carriage V can be obtained by drawing the curve of 

motion while moving downwards, as shown in Figure-9.3; in which a linear 

segment of the obtained curve is considered, where the horizontal and vertical 

displacements are X & Y, respectively. 

 

From this line we can find out that: 

 

YX V

Y

V

X
t                                                  (12) 

 

where; t is the time elapsed in travelling along that segment 

            VX is the horizontal speed, which is the drum’s circumferential speed 

            VY is the vertical speed, which is the speed of the falling carriage V 

 

 

 

 

 

 

 

 

 

 

 
Figure-9.3 Response curve of a typical mass-damper system 
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V- Experimental Procedures: 
 

Part one- Decaying Curve Method: 
 

1) Start with the system shown in Figure-9.1 without additive masses, and with 

the damper fully closed (The two disks are in touch with no clearance). 

2) Install the paper roll in place and wrap it over the drum, then make the pen in 

touch with the drum over the paper. 

3) Pull the carriage down and switch the motor of the drum on, and keep it like 

this for a moment to get a straight line on the paper at first; then release the 

carriage and leave it to oscillate freely, and draw the decaying curve of its 

motion on the paper, as the one shown in Figure-9.2. 

4) Repeat step-3 another four times; and in each one increase the clearance 

between the two disks of the damper, by revolving the upper disk one complete 

turn.  After completing the five trials, remove the paper to be used in your 

calculations. 

5) Add a unit mass (1 kg) to the carriage ( M= 2.6 kg), and then repeat steps-2, 

3 & 4. 

6) Add another unit mass and repeat steps-2, 3 & 4 again. 

 

 

 

Part Two- Falling Weight Method: 
 

1) Remove the spring and the additive masses from the system, and close the 

damper again. 

2) Install another paper on the drum; then pull the carriage upwards and activate 

the motor of the drum for a while, then release the carriage to fall freely in the 

dashpot. 

3) Repeat step-2 four times again by revolving the upper disk one turn for each. 

The curve you obtain should be similar to that in Figure-9.3. 

4) Add (1 kg), and then add another one; and for each loading case, repeat steps-2 

& 3. 
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VI- Collected Data: 
 
Table-9.1 Parameters of the spring 

Parameter Value 

D (mm)  

d (mm)  

N (turn)  

 

 

 

VII- Data Processing: 
 

Part one- Decaying Curve Method: 
 

From the decaying curve 

in Figure-9.2: 

Use eqn-7 to find , and 

then apply in eqn-8 to 

find . 

 

From eqns-9 & 10, 

evaluate K and n. 

Find C from eqn-4, 

corresponding to each 

state listed later. 

 

 

 

Part Two- Falling Weight Method: 
 

From the curve of free 

falling in Figure-9.3, and 

using eqn-12, find the 

velocity V. 

 

Substitute in eqn-11 to 

find C. 

For each state, compare 

the value of C you obtain 

by this method, with the 

corresponding value 

obtained by the decaying 

curve method before. 
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VIII- Results: 

 
K = ……………(N/m). 

VX = …………… (m/s). 

 

 
Part one- Decaying Curve Method: 
 
Table-9.2 Data processing results 

M = 1.6 kg:          n =……………(rad/sec) 

Trial Upper disk 

turns 
  C 

(N.s/m) 

1 0    

2 1    

3 2    

4 3    

5 4    

 

M = 2.6 kg:          n =……………(rad/sec) 

Trial Upper disk 

turns 
  C 

(N.s/m) 

1 0    

2 1    

3 2    

4 3    

5 4    

 

M = 3.6 kg:          n =……………(rad/sec) 

Trial Upper disk 

turns 
  C 

(N.s/m) 

1 0    

2 1    

3 2    

4 3    

5 4    
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Part Two- Falling Weight Method: 
 
Table-9.3 Data processing results 

M = 1.6 kg 

Trial Upper disk 

turns 

V 

(m/s) 

C 

(N.s/m) 

Percent 

Error () 

1 0    

2 1    

3 2    

4 3    

5 4    

 

M = 2.6 kg 

Trial Upper disk 

turns 

V 

(m/s) 

C 

(N.s/m) 

Percent 

Error () 

1 0    

2 1    

3 2    

4 3    

5 4    

 

M = 3.6 kg 

Trial Upper disk 

turns 

V 

(m/s) 

C 

(N.s/m) 

Percent 

Error () 

1 0    

2 1    

3 2    

4 3    

5 4    
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IX- Discussion And Conclusions: 
 

1) Draw the damping coefficient C (N.s/m), versus disks spacing (turn), for the 

different values of M. 

 

 

2) It is known that the damping coefficient for the viscous damper is independent 

of the attached mass.  How dose this statement coincides with eqn-11? Verify 

this from your results? 

 

 

 

 

 

 

 

 

3) In eqn-11, it was claimed that the velocity of the falling mass is constant.  Is 

this correct? Why? Give a proof for your answer from your results. 

 

 

 

 

 

 

 

 

4) List the expected sources of errors affecting the results of the experiment? 

 

 

 

 

 

 

5) During the execution of the experiment, did the resulted decaying curve violate 

the expected one shown in Figure-9.2?  When?  Why?  And how could you 

alter the situation? 
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Transverse Vibrations of a Beam 
 

 

I- Objectives: 
 

1) To introduce “Dunkerley’s Equation”, and demonstrate its use in studying 

transverse vibrations of beams. 

2) To recognise the application of this equation on a simply supported beam, 

for the aim of: 

1- Determining the natural frequency n of the simply supported beam, 

and then to compare it with the analytical value. 

2- Evaluation of its effective mass MEff, and then comparing it with the 

theoretical value. 

3- Determining the stiffness of the beam K, to be compared with the 

theoretical value. 

3) To demonstrate the principle of operation of the “Un-damped Dynamic 

Vibration Absorber” in eliminating vibrations of single degree of freedom 

systems. 

 

 

II- System Description: 
 

        The system under study is shown in Figure-10.1 below, which consists of a 

simply supported rectangular cross-section beam, of known dimensions L, w & t, 

modulus of elasticity E, total mass Mb and effective mass MEff. 

Auxiliary masses (disks) M may be added to the system. 

An electrical motor with mass (Mm = 3 kg) is fixed on the beam, and rotates a 

circular disk with eccentric mass to induce vibrations on the system. 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure-10.1 General layout of the experiment set-up 

Beam

(L, E, I, K)

(Mb, M eff )

Motor

Mm

Auxiliary masses

M
Pin joint
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III- Governing Equations: 
 

Part One- Dunkerley’s Equation: 
 

        For the system shown in Figure-10.1, the equation of motion is given by: 

 

  0 KYYMM Eff
                                   (1) 

 

From which the natural frequency of the whole system ns is found as: 

 

Eff

ns
MM

K


                                                                                                    (2) 

 

 

Square and expand this equation to get: 

 

K

M

K

M Eff

ns


2

1


 

 222

111

nbnmns 
                                                                                           (3) 

 

 

This equation is known as the “Dunkerley’s Equation”, where: 

     ns is the natural frequency of the hole system. 

     nm is the natural frequency of the motor. 

     nb is the natural frequency of the beam. 

 

 

 

Analytical Solution: 
 

1. Natural Frequency (nb): 

 

        Analytically, for a simply supported beam, an expression for the natural 

frequency n can be derived to give: 

 

3

2

4

2

LM

EI

AL

EI

b

n 


                                                                                     (4) 
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2. Effective Mass (MEff): 

 

        The effective mass MEff of a simply supported beam is given in terms of its 

total mass Mb by the expression: 

 

bbEff MMM 485714.0
35

17
                                                                                    (5) 

 

 

Knowing that: 

 Deflection of the simply supported beam y(x): 

 22 34
48

)( Lx
EI

Fx
xy                                                                                             (6) 

 

 

 Maximum deflection yMax: 

EI

FL
xyMax

48
)(

3
                                                                                                        (7) 

 

 

 Kinetic energy T: 

 

2/

0

2

2/

0

2 .2.
2

1
2

L

b

L

dxy
L

M
dmyT                                                                                (8) 

 

 

 

3. Stiffness (K): 

 

        From eqn-7, it can be easily concluded that the stiffness of the simply 

supported beam K is equal to: 

 

3

48

L

EI
K                                                                                                                 (9) 
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Part Two- Vibration Absorber: 
 

        The Vibration Absorber is a secondary vibratory system attached to a primary 

one, such that it eliminates the vibrations of that primary system.  One type of such 

absorbers is the Un-damped Dynamic Vibration Absorber, which is simply a 

spring-mass system. 

Figure-10.2 below shows a form of such vibration absorbers; in which a cantilever 

beam having two identical masses at both ends -each at distance LC- is fitted to the 

system used before and shown in Figure-10.1 without the auxiliary masses. 

The new system can be represented by a two-degrees of freedom system as the one 

shown schematically also in Figure-10.2, where: 

M1 is the mass of the primary system (the beam and the motor). 

M2 is the mass of the secondary system (each of the two suspended masses). 

K1 is the stiffness of the simply supported beam. 

K2 is the stiffness of the cantilever beam. 

 

 

 

 

 

 

 

 

 
 

 

 
Figure-10.2 General layout of the original system after the addition of the vibration absorber 

 

 

        Taking each system separately (primary & secondary), the equations of 

motion for the two systems are given by: 

 

  )sin(2121111 tFyyKyKyM                                                               (10) 

 

  012222  yyKyM                                                                                           (11) 

 

 

From which the steady state response is found for both as: 

 

 
   2

2

2

22

2
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2
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1
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Y
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
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   2

2

2

22

2

121

2
2

KMKMKK

FK
Y





                                                             (13) 

 

 

But: 

1K

F
Static                                                            (14) 

 

So, eqn-12 becomes: 
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Figure-10.3 below shows a graph of 
Static

Y


1 versus 

1n


 for the primary system. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure-10.3 Magnification factor versus frequency ration for the primary system 

 

 

Considering eqns-12 & 15, to eliminate the vibrations of the primary system, then: 
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 
2

22

M

K
  

But, at the state of resonance of the primary system: 

1

12

1

2

M

K
n    

 
2

2

1

1

M

K

M

K
                                                         (16) 

 

 

That is, the natural frequency of the primary system should be equal to that of the 

secondary systems, and so: 

 

3

2

2 3

C

CC
R

LM

IE
                                                                                                         (17) 

 

 

 

To find the values of r1 and r2 in Figure-10.3, then: 

 

1Y  

    0
2
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2
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n
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1
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M
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2
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2
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From eqn-18 we can find that: 
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IV- Experimental Procedures: 

 
Part One- Dunkerley’s Equation: 
 

1) Start with the system shown in Figure-10.1 without any additional masses, and 

activate the motor to initiate vibrations on the beam. 

2) Increase the speed gradually and observe the behaviour of the system, until you 

identify the resonance state where maximum amplitude of vibrations takes 

place, then record the speed of the motor NR. 

3) Add a unit mass (1 kg) to the beam; and again, record the speed of the motor at 

resonance NR. 

4) Repeat step-3 another five times to get total seven pairs of M and NR. 

 

 

Part Two- Vibration Absorber: 
 

1) Replace the auxiliary masses in the original system by the vibration absorber as 

shown in Figure-10.2, with the two masses at the extreme ends of the 

cantilever beam. 

2) Run the motor at the same speed corresponding to resonance that you have 

obtained for the system without auxiliary masses in the first part (NR at M = 0); 

then slide the two masses slowly on the cantilever beam by equal distances, 

until you detect the best sense of elimination of vibrations of the simply 

supported beam.  Record the length LC. 

3) Keep the vibration absorber in the previous modified configuration, and run the 

motor at low speed.  Increase the speed slowly, and determine the speed of the 

motor at each one of the two cases of resonance shown in Figure-10.3; that is, 

N1 and N2 corresponding to r1 and r2, respectively. 
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V- Collected Data: 
 

Part One- Dunkerley’s Equation: 
 
Table-10.1 Dimensions of the beam 

Parameter Value 

L (cm)  

w (mm)  

t (mm)  

 

 
Table-10.2 Data collected for the Dunkerley’s Equation part 

Trial M (kg) NR (rpm) 

1 0  

2 1  

3 2  

4 3  

5 4  

6 5  

7 6  

 

 

 

Part Two- Vibration Absorber: 
 
Table-10.3 Parameters of the cantilever 

                  beam and the suspended masses 

Parameter Value 

LC (cm)  

wC (mm)  

tC (mm)  

M2 (kg)  

 

 
Table-10.4 Data collected for the Vibration 

                  Absorber part 

Parameter Value 

N1 at r1 (rpm)  
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N2 at r2 (rpm)  

 

 

VI- Data Processing: 
 

Part One- Dunkerley’s Equation: 
 

For each value of NR 

obtained, find the 

corresponding natural 

frequency for the system 

ns. 

Draw 

2

1











ns
versus 

M, as shown in 

Figure-10.4. 

1) Slope = 
K

1
 

      K is determined. 

4) Intercept with the vertical 

     axis 

2

1












nb

InterY


 

      nb is found. 

5) Intercept with the 

horizontal axis 

EffInter MX   

      Verify MEff. 

 

From eqn-5, find MEff Compare it with the experimental value. 

Determine K from eqn-9 Compare it with the experimental value. 

Use eqn-4 to find nb Compare it with the experimental values. 

 

 

 

Part Two- Vibration Absorber: 
 

Apply in eqn-17, with 1nn    to find 

LC for the cantilever beam. 

 

Compare LC calculated with that 

obtained experimentally. 

Use eqn-18 to evaluate r1 and r2. Compare these values with those 

observed experimentally. 

Then verify your experimental results 

using eqn-19. 

 

 

 

 

 



 
 
 

 

104 

 

 

 
VII- Results: 

 
Part One- Dunkerley’s Equation: 
 
Table-10.5 Data processing analysis for the Dunkerley’s Equation part 

Theoretically: 

MEff (kg)  

K (N/m)  

nb (rad/sec)  

 

 
Table-10.6 Data processing results for the Dunkerley’s Equation part 

From Figure-10.4 

Slope (m/N) K (N/m) Percent Error () 

   

YInter (sec/rad)2 nb (rad/sec) Percent Error () 

   

XInter (kg) MEff (kg) Percent Error () 

   

 

 

 

Part Two- Vibration Absorber: 
 
Table-10.7 Data processing results for the Vibration Absorber part 

Parameter Theoretical Experimental Percent Error () 

LC (mm)    

r1    

r2    
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VIII- Discussion And Conclusions: 
 

1) Use eqns-6, 7 & 8 to derive the expression relating the effective mass of a 

simply supported beam to its total mass given in eqn-5? 

 

 

 

 

 

 

 

 

2) How can you explain the phenomena of having two resonance states for the 

beam after the addition of the vibration absorber Figure-10.3? 

 

 

 

 

 

 

3) In eqn-17 concerning the vibration absorber part, why did we use the stiffness 

and the mass of only one side of the beam and not both of them? 

 

 

 

 

 

 

4) With the aid of Figure-10.3, comment on the effectiveness of employing the 

vibration absorber in eliminating vibrations.  And use eqns-18 & 19 to 

determine how to increase this effectiveness? 

 

 

 

 

 

 

 

5) List the sources of error in this experiment? 
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